A Review of Interferometric Synthetic Aperture RADAR (InSAR) Multi-Track Approaches for the Retrieval of Earth’s Surface Displacements
نویسندگان
چکیده
Synthetic Aperture RADAR Interferometry (InSAR) provides a unique tool for the quantitative measurement of the Earth’s surface deformations induced by a variety of natural (such as volcanic eruptions, landslides and earthquakes) and anthropogenic (e.g., ground-water extraction in highly-urbanized areas, deterioration of buildings and public facilities) processes. In this framework, use of InSAR technology makes it possible the long-term monitoring of surface deformations and the analysis of relevant geodynamic phenomena. This review paper provides readers with a general overview of the InSAR principles and the recent development of the advanced multi-track InSAR combination methodologies, which allow to discriminate the 3-D components of deformation processes and to follow their temporal evolution. The increasing availability of SAR data collected by complementary illumination angles and from different RADAR instruments, which operate in various bands of the microwave spectrum (X-, Land C-band), makes the use of multi-track/multi-satellite InSAR techniques very promising for the characterization of deformation patterns. A few case studies will be presented, with a particular focus on the recently proposed multi-track InSAR method known as the Minimum Acceleration (MinA) combination approach. The presented results evidence the validity and the relevance of the investigated InSAR approaches for geospatial analyses.
منابع مشابه
A Review of the Three-dimensional Field Displacement Retrieval Methods Using Interferometric Synthetic Aperture Radar Observations (InSAR) With Emphasis on the Precision of Each of these Methods
Interferometric Synthetic Aperture Radar (InSAR) technology provides a useful tool for quantitatively measuring the deformation of the earth, influenced by natural factors (earthquake, subsidence, and landslide) and human factors (construction of structures, drilling, and the overexploitation of underground water aquifers). In this context, time-series analysis of radar images allows the monito...
متن کاملRetrieving Three Dimensional Displacements of InSAR Through Regularized Least Squares Variance Component Estimation
Measuring the 3D displacement fields provide essential information regarding the Earth crust interaction and the mantle rheology. The interferometric synthetic aperture radar (InSAR) has an appropriate capability in revealing the displacements of the Earth’s crust. Although, it measures the real 3D displacements in the line of sight (LOS) direction. The 3D displacement vectors can be retrieved ...
متن کاملApplication of Displacement Map Produced by Interferometric Synthetic Aperture Radar Technique in Height Datum Determination in the Subsidence Area
Damages due to subsidence such as destruction of watering system and agricultural fertile soil, wells increasing, damage to the roads, bridges and high ways and disordering in the water and gas supplying usually are irreparable and costly. As a huge amount bench marks of height network of Iran are placed in the subsidence area, changing their heights is a challenge for NCC. In this study, a new...
متن کاملFrontiers of Radar Remote Sensing
all-weather, dayand-night imaging capability for mapping the Earth’s surface. Through interferometric synthetic aperture radar (InSAR) technique, radar imagery can be used to map Earth surface characteristics and measure land surface deformation at an unprecedented precision and spatial resolution. This article introduces the basics of radar and InSAR imaging, summarizes the revolution of InSAR...
متن کاملEmerging Applications of Interferometric Synthetic Aperture Radar (InSAR) in Geomorphology and Hydrology
Interferometric synthetic aperture radar (InSAR) is a powerful geodetic tool used to construct digital elevation models of the earth’s topography and to image centimeter-scale displacements associated with crustal deformation and the flow of ice sheets. The past decade has seen significant improvements in our understanding of earthquakes, volcanoes, and glaciers as a direct result of this techn...
متن کامل